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Abstract. This paper reports results of molecular dynamics simulations for a glassy polymer melt
consisting of short, non-entangled chains. The temperature region studied covers the supercooled
state of the melt above the mode-coupling critical temperature. The analysis focuses on the interplay
of simple-liquid and polymer-specific effects. One can clearly distinguish two regimes: a regime
of small and one of large monomer displacements. The first regime corresponds to motion of a
monomer in its local environment. It is dominated by the cage effect and well described by the
idealized mode-coupling theory. The second regime is governed by the late-β/early-α process. In
this regime the connectivity of the monomers begins to interfere with the cage dynamics and finally
becomes dominant. The monomer displacement is compared with simulation results for a binary
Lennard-Jones mixture to highlight the differences which are introduced by the connectivity of the
particles.

1. Introduction

Bisphenol-A polycarbonate, atactic polystyrene, polybutadiene—three polymers with
completely different chemical structure, but similar properties during the freezing process.
They all undergo a glass transition. Due to the structural complexity, crystallization is
effectively prevented or even a priori impossible. The polymer melts retain the high-
temperature amorphous structure while the relaxation time increases by many orders of
magnitude upon cooling towards the glass transition temperature Tg. These are typical features
of the solidification process—not only for the three examples picked out above, but also for
many other polymeric substances [1].

When trying to model the glassy freezing of polymer melts by computer simulations,
an ideal choice would consist in studying a dense melt with a large number of long chains
(chain length N ∼ 103 to N ∼ 104) while calculating the potentials from the simultaneous
motion of nuclei and electrons (the Car–Parrinello method [2]). However, such a procedure
is currently not feasible. The structural relaxation time of polymer melts with N � 103 is
already at high temperatures of the order of milliseconds and larger, whereas the inclusion
of the electrons’ dynamics requires the time step of the simulation to be roughly 10−17 s. A
disparity of at least 14 orders of magnitude in timescales cannot be covered in present day
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simulations. Furthermore, the simultaneous simulation of electrons and nuclei also places a
strong restriction on the size of the system. Typically, the number of particles simulated does
not exceed one hundred.

Thus, introducing simplifications is necessary. There are several levels to this. First, the
quantum-mechanical potential can be replaced by empirical potentials for the bond length,
the bond angles, the torsional angles and the long-range interactions along the backbone
of the chain. The latter interactions are typically modelled by a Lennard-Jones potential.
After a judicious adaptation of the potential parameters an almost quantitative comparison
with experimental data is possible. Such a comparison has been done for short chains of
polyethylene [3] and polybutadiene [4] at high temperatures, for instance. However, reducing
the temperature to the supercooled regime close to the mode-coupling critical temperature
Tc [5] (>Tg) still represents a great challenge. On the other hand, this can be achieved by
a further simplification of the model. The simplification consists in replacing the chains
with chemical monomers and realistic potentials by chains of Lennard-Jones particles. This
represents a minimal model for a polymer melt. The evolution of the slowing down of the
structural relaxation when supercooling such a model is discussed in this paper.

2. A simple model for glassy polymer melts

This section compiles some properties of the model. A more detailed description can be found
in references [6, 7].

2.1. Definition of the model

In the simulations, linear, monodisperse chains of length N = 10 (the non-entangled state)
were used. All monomers interact by means of a truncated Lennard-Jones (LJ) potential,

ULJ(r) = 4ε[(σ/r)12 − (σ/r)6] + C.

The constant C = 0.007 75 shifts the potential such that it vanishes for r � 2rmin = 2×21/6σ ,
where rmin is the minimum position. Temperature and distances are measured in units of ε/kB

and σ , respectively, and time is measured in units of (mσ 2/ε)1/2, where the mass is set to unity.
Furthermore, nearest-neighbour monomers along the backbone of a chain are bonded to

each other by a FENE (finitely extensible non-linear elastic) potential,

UF(r) = −15R2
0 ln[1− (r/R0)

2]

withR0 = 1.5 [8]. With the parameters chosen, the superposition of the FENE and LJ potentials
leads to a steep effective bond potential with a minimum at about 0.96σ (see figure 1).

The interplay of these potentials has two effects. First, the effective bond potential keeps
neighbouring chain monomers so close together that bond crossings are impossible. Second,
the favoured bond length of 0.96 is incompatible with rmin, and thus with crystalline ordering.
By construction, the structure of the melt is therefore amorphous (see figure 2).

In summary, the polymer model used represents a variant of a (monatomic) Lennard-Jones
model for simple liquids, in which crystallization is prevented by the competition between
intrachain and interchain interactions.

2.2. Simulation procedure

In the simulations, a melt configuration contained 120 polymers of length N = 10. Ten
independent configurations were simulated at each temperature to improve the statistics. The
simulation procedure consisted of two steps. First, a simulation at constant pressure (mostly
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Figure 1. Effective bond (- - - -) and Lennard-Jones potentials (——). The bond potential results
from a superposition of the Lennard-Jones and the FENE potentials and was shifted by −20 to
put it on the same scale as the LJ potential (left-hand panel). The minimum position of the bond
potential is smaller than that of the LJ potential. This incompatibility prevents the formation of a
regular crystalline structure (right-hand panel).
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Figure 2. The temperature dependence of the melt’s structure factor. The temperatures span
the interval from the supercooled liquid (T = 0.52) to the glassy state (T = 0.2) of the melt.
The mode-coupling critical temperature and the glass transition temperature are Tc � 0.45 and
Tg � 0.415, respectively. In the mode-coupling analysis mostly q = 3, 6.9, 9.5 are used. The
smallest q-value probes the size of a chain (end-to-end distance: Re � 12.3; radius of gyration:
Rg � 2.09), whereas the larger wave-vectors correspond to intermonomer distances.

p = 1) was carried out to find the density corresponding to this pressure and the desired
temperature. The resulting volume was fixed, and then the simulation was continued in the
canonical ensemble using the Nosé–Hoover thermostat. The dynamic properties of the model
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are results from these canonical simulations. The first constant-pressure step was only used
to equilibrate the melt at the given thermodynamic state point. Then, a second equilibration
step was added in the canonical ensemble, in which each chain was propagated several times
over the distance of the radius of gyration before starting the analysis. This time is sufficient
for the incoherent scattering functions to have decayed to zero for all wave-vectors (except for
q < 2 at T = 0.46).

2.3. Some static properties

The particular choice of the bonded and non-bonded potentials has two main consequences
for the static properties of the model. First, the chains do not become stiffer with decreasing
temperature. In the interesting temperature region (T < 0.7) the end-to-end distance, Re, and
the radius of gyration, Rg, are essentially constant: R2

e � 12.3, R2
g � 2.09. Second, there is

no tendency to develop crystalline order. This is illustrated in figure 2 which shows the static
structure factor S(q) of the melt for T = 0.2, T = 0.46 and T = 0.52.

The lowest temperature is smaller than the best estimate of the model’s glass transition,
Tg � 0.415, inferred from the temperature dependence of the specific volume during a (slow)
quenching experiment [9]. The other temperatures are above the mode-coupling critical
temperature (see section 3.1; best estimate Tc � 0.45). In this relevant temperature range the
structure factor remains essentially unchanged and exhibits the shape typical of an amorphous
material.

3. Dynamics above Tc: simple-liquid versus polymer-specific effects

This section provides an overview of the dynamic properties of the model. It starts with
a mode-coupling analysis [6, 10], which emphasizes the similarities of the melt studied to
simple liquids, and then focuses on polymer-specific properties which become dominant in
the diffusive regime [11].

3.1. Polymers as simple liquids: mode-coupling analysis

The key quantity of this analysis is the incoherent intermediate-scattering function

φs
q(t) =

1

M

M∑
m=1

〈
exp

(
i�q · [�rm(t)− �rm(0)]

)〉
(1)

where �rm(t) denotes the position of the mth monomer at time t and M the total number of
monomers. Figure 3 shows the typical decay of this correlation function for a temperature
close to, but above Tc.

Initially, the scattering function decreases quickly. Since the monomer displacements are
small at short times, this initial decrease can be well represented by a Gaussian approximation,

φs
q(t) � exp

[
−1

6
q2g0(t)

]
(2)

where g0(t) is the mean square displacement of all monomers. Equation (2) progressively
deviates from the simulation data when the relaxation becomes retarded in an intermediate
time interval. In this time interval, φs

q(t) is close to the non-ergodicity parameter f sc
q [5]. The

relaxation towards and away from f sc
q occurs in two steps. This two-step relaxation can be

fitted by the β-process of the idealized mode-coupling theory (MCT), which is (to leading
order) given by [5, 12]

φs
q(t) = f sc

q + hs
qG(t) (3)
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Figure 3. Comparison of φs
q (t) (◦) for T = 0.48 and q = 6.9 (≈ maximum of S(q)) with

various theoretical approximations: a Gaussian approximation (equation (2)) (— — —), the MCT
result for the β-regime (equation (3) plus corrections [12]) (——) and the Kohlrausch function
(equation (4)) (· · · · · ·). The non-ergodicity parameter f sc

q is indicated as a horizontal dashed line.

where G(t) is the time- and temperature-dependent β-correlator and hs
q a temperature-

independent prefactor. The suggested physical picture underlying this formula is that particles
in a liquid sit in ‘cages’ formed by their neighbours. At high temperatures, all particles
are mobile. The cages open frequently due to fluctuations, and the enclosed particle can
escape. However, as Tc is approached, the particles mutually block each other, which leads to
a temporary slowing down of their motion. The signature of this ‘cage effect’ is the two-step
process of φs

q(t) (and related correlation functions). Figure 3 shows that this picture developed
for simple liquids is also applicable to the polymer melt studied. The second step represents
the onset of the final structural relaxation, the α-process. A convenient description of the
α-process is given by the Kohlrausch function

φs
q(t) = f sc

q exp

[
−

(
t

τq

)βq
]

(4)

where we fixed the amplitude to f sc
q in the analysis [10]. This choice allows one to read off the

relaxation time τq directly from the simulation data, so the exponent βq is the only unknown
parameter. In general, equation (4) is not a solution of the mode-coupling theory, except if
q → ∞ [13]. Then, βq is identical to the von Schweidler exponent b which determines
the onset of the α-process in mode-coupling theory [5]. For the present model, we found
βq = b = 0.75 already for q � 3.

3.1.1. Independence of the thermodynamic path. From the β-analysis, one obtains an
estimate for the critical temperature, Tc = 0.45, and for the exponent γ = 2.09 which
determines the divergence of the α-relaxation time in the idealized MCT:

τq ∼ (T − Tc)
−γ . (5)
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To test equation (5), we fixed Tc = 0.45 and determined γ for different q, and furthermore
for different polymer-specific correlation functions which probe all length scales of a chain,
ranging from the smallest one of a bond to the largest one of the end-to-end distance. The
result is shown in figure 4.

τE1 τE2 τB2 τq=3.0 τq=6.9 τq=9.5

1.0

1.5

2.0

2.5

3.0
γ

isobar
isochore

γMCT=2.09

Figure 4. Values of γ , determined from the temperature dependence of various correlation times,
for two different thermodynamic paths, which yield the same critical temperature. On the abscissa,
the relaxation times are quoted, from which γ was determined: τE1 = relaxation time of the
first Legendre polynomial of the end-to-end vector, τE2 = relaxation time of the second Legendre
polynomial of the end-to-end vector, τB1 = relaxation time of the first Legendre polynomial of the
bond vector, τq = relaxation time of φs

q (t) for the respective q-value. For both the isobaric and the
isochore path the error margins are about 10%, which is rather large, since γ is very sensitive to a
variation of the critical temperature. Within the error bars, γ does not depend on the thermodynamic
path. The prediction of the β-analysis, γ = 2.09, is shown as a horizontal dashed line. Taken from
reference [7].

The γ -values obtained are close to the MCT result predicted from the β-analysis, but
exhibit a systematic decrease when the length scale probed increases. On large length scales
the tendency to freeze is less pronounced than locally. This observation is independent of
the chosen thermodynamic path. Figure 4 compares results from an isobaric simulation at
p = 1 with an isochoric simulation, in which the density was fixed at the value measured at
(T = Tc, p = 1). Therefore, the two simulations have the same critical point. Since MCT
predicts that exponents, like γ , are thermodynamic quantities determined by S(q) (and other
thermodynamic properties) at Tc, the measured γ -value should be independent of the chosen
path, if the paths have the same critical point. Figure 4 supports this prediction.

3.2. Escape from the cage: dominance of chain connectivity

The previous section emphasized the similarity between the polymer model studied and simple
liquids. The connectivity of the monomers did not seem to have a dominant influence on the
relaxation behaviour of the melt close to Tc. This is only true for the early β-process, and not
for the escape from the cage, i.e., the onset of the α-process.
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3.2.1. Mean square displacements. In order to illustrate the interplay of the cage effect and
chain connectivity, figure 5 shows the mean square displacement of an inner monomer, g1(t),
and of the chain’s centre of mass, g3(t), again for T = 0.48 [11].
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Figure 5. Left-hand panel: a log–log plot of the mean square displacements of an inner monomer,
g1(t), and of the chains’ centre of mass, g3(t), versus time for T = 0.48. The thick solid line is
the Rouse formula for g1(t) (equation (6)). The initial ballistic behaviours for g1(t) and g3(t), i.e.,
g1(t) = 〈v2〉t2 = 3T t2 and g3(t) = 3T t2/N (〈v2〉: mean square monomer velocity; N = 10:
chain length), and the late-time diffusive behaviour are indicated as dashed lines. In addition, a
power-law fit g1(t) ∼ tx with an effective exponent x � 0.63 is shown as a thin solid line. The
dashed horizontal lines represent the radius of gyrationR2

g (� 2.09; upper line) and the plateau value

6r2
sc of the MCT analysis (� 0.054; lower line), respectively. The dashed vertical line indicates

the β-timescale tε . Additionally, the mode-coupling approximation in the β-relaxation regime is
shown as a thin solid line. Taken from reference [11]. Right-hand panel: a schematic picture of
the motion of a monomer in its cage. In the ballistic and early-β regime, the monomer performs a
rattling motion in its local environment (indicated by←→). Suppose that a ‘hole’ opens due to a
fluctuation of the surrounding particles with the result that the monomer can move in the direction
of the bold arrow. This does not necessarily lead to an escape from the cage because the monomer
might be pulled back by the bonds to its neighbours, contrary to the behaviour in a simple liquid.
Therefore, the α-process is dominated by chain connectivity, i.e., by polymer-specific effects.

At short times, the displacement of a monomer is so small that it does not feel surrounding
monomers in the melt. The monomer moves freely, i.e., g1(t) ∼ t2. At later times, this ballistic
motion slows down due to the confinement imposed by its nearest neighbours. Over about
two decades, g1(t) remains close to rsc ≈ 0.095, i.e., to a displacement that is about 10% of
the monomer diameter. This is the regime of the β-relaxation, rsc being the counterpart of f sc

q

in real space (see figure 3). Motions on this length scale are so small that the connectivity
between the monomers does not significantly alter the dynamics of the polymer model studied
compared to simple liquids [14]. This could be why mode-coupling theory can provide a
reasonable explanation in the β-regime. However, as soon as the monomer tries to leave the
cage, polymeric effects must become important. A particle in a simple liquid can always escape
the cage, if a fluctuation opens a sufficient ‘hole’, whereas a monomer might be pulled back
by the bonds to its neighbours. Therefore, there is another subdiffusive regime, g1(t) ∼ t0.63,
between the MCT β-process and free diffusion. This subdiffusive regime is visible for g1(t),
but not for the mean square displacement of the centre of mass g3(t). The difference between
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the two displacements results from the connectivity of monomers and can be understood
quantitatively in terms of the (discrete) Rouse model (see figure 5):

g1(t) = g3(t) + 8
N−1∑
p=1

〈| �Xp(0)|2〉
[
1−%p(t)

]
cos2

[
(n− 1/2)pπ

N

]
(6)

where%p(t) is the relaxation function of thepth Rouse mode and 〈| �Xp(0)|2〉 the corresponding
normalization factor at t = 0. Equation (6) reflects the property that correlations between
different modes, p �= q, vanish (see the next paragraph). Further predictions of the Rouse
model are: %p(t) ∝ exp(−t/τp) and 〈| �Xp(0)|2〉 ∝ p−2. On inserting these results in
equation (6), one obtains g1(t) ∼ t1/2 [15] instead of g1(t) ∼ t0.63. This discrepancy suggests
that the simulated Rouse modes exhibit a dependence on time and p different to that expected
from theory.

3.2.2. Rouse modes. In a polymer melt, long-ranged excluded-volume and hydrodynamic
interactions are screened [15]. For short, non-entangled chains the Rouse model is supposed to
provide a good description of the polymer dynamics at high temperatures. The basic variables
of the model are the normal modes of a chain, the Rouse modes. For the discrete polymer
model studied, they are given by (�rn(t): position vector of the nth monomer)

�Xp(t) = 1

N

N∑
n=1

�rn(t) cos

[
(n− 1/2)pπ

N

]
p = 0, . . . , N − 1. (7)

The Rouse model predicts that the (normalized) correlation functions %pq(t) for different
modes p and q are orthogonal for all times, i.e., %pq(t) ∝ δpq , obey a time–temperature
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Figure 6. The correlation function of the fifth Rouse mode, %5(t), versus the rescaled time t/τ5
for five different temperatures: T = 0.47, 0.49, 0.52, 0.7, 1. The scaling time τ5 is defined by
%5(τ5) = 0.3 (dashed horizontal line). In addition, an exponential function (thin dashed line),
a Kohlrausch function (dotted line) and a von Schweidler fit (thick dashed line) are shown. The
Kohlrausch function is given by 0.948 exp[−1.15(t/τ5)

0.87] with 0 � %5(t) � 0.95 as a fit
interval. Using the von Schweidler exponent b = 0.75 from the mode-coupling β-analysis [10]
and fitting %5(t) for 10−4 � t � 0.5, the result for the von Schweidler function is given by
0.959− 0.815(t/τ5)

0.75 + 0.086(t/τ5)
1.5. Taken from reference [11].
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superposition principle and decay exponentially. Whereas the first two predictions are realized
by our polymer model, the relaxation is non-exponential already at high temperatures (see
figure 6). Furthermore, time–temperature superposition is only observed for the final part of
the relaxation. At intermediate times, %p(t) exhibits a two-step relaxation. Therefore, the
cage effect is also visible in this polymer-specific correlation function.

4. Summary

The main results of the present review can be summarized by a comparison of the dynamics
of the polymer melt studied with a simple liquid. Figure 7 shows such a comparison. On
plotting g1(t) for all temperatures as a function of time multiplied by the diffusion coefficient
of the centre of mass at that temperature, we obtain the set of curves displayed in the inset of
figure 7. The envelope of this set of curves is shown in the main part of the figure in comparison
to the same master curve constructed for a binary Lennard-Jones fluid [16]. At large times
the data for the two models have to agree by construction. At very early times the particles
move freely, and both models exhibit ballistic motion, followed by the slow displacement of
the MCT β-process. However, whereas the Lennard-Jones fluid directly crosses over from the
cage effect to the free diffusion, the polymer exhibits the intervening connectivity-dominated
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Figure 7. The master curve of the mean square displacement of an inner monomer g1(t) versus
the rescaled time Dt (D: diffusion coefficient of a chain). The master curve (= thick solid line in
the inset and the main figure) is constructed from the temperatures T = 0.48, 0.49, 0.5, 0.52, 0.55,
0.6, 0.65, 0.7, 1, 2, 4 (from left to right in the inset; the labels of the inset axes are identical to those
of the main figure). The thick dash–dotted line is a master curve constructed from the simulation
data for a binary Lennard-Jones mixture [16], including temperatures from 0.466 � T � 5. Since
Tc � 0.435 for the binary mixture, but Tc � 0.45 for the present polymer model, the lowest
temperatures correspond to the same distance to the critical point, i.e., T − Tc = 0.03, in both
cases. Additionally, two thin straight lines are shown, indicating a power-law fit to the monomer
displacement, g1(t) ∼ tx with x � 0.63, and the late-time diffusive behaviour 6Dt which is
common to the simple liquid and the polymer data. The thick dashed line is a fit to an effective
von Schweidler law (see the text). The dashed horizontal lines represent the end-to-end distance
R2

e (� 12.3; upper line) and the radius of gyration R2
g (� 2.09; lower line), respectively.
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regime for length scales between the bond length, l ≈ 1, and the end-to-end distance Re. In
this regime the observed mean square displacement drops below the MCT description, which
is here displayed as the effective von Schweidler law 6r2

1 + A1(Dt)0.75, with r1 = 0.087 and
A1 = 11.86, before free diffusion finally sets in.
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